skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dag, Ceren_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rydberg atom arrays with Van der Waals interactions provide a controllable path to simulate the locally connected transverse-field Ising model (TFIM), a prototypical model in statistical mechanics. Remotely operating the publicly accessible Aquila Rydberg atom array, we experimentally investigate the physics of TFIM far from equilibrium and uncover significant deviations from the theoretical predictions. Rather than the expected ballistic spread of correlations, the Rydberg simulator exhibits a sub-ballistic spread, along with a logarithmic scaling of entanglement entropy in time - all while the system mostly retains its initial magnetization. By modeling the atom motion in tweezer traps, we trace these effects to an emergent natural disorder in Rydberg atom arrays, which we characterize with a minimal random spin model. We further experimentally explore the different dynamical regimes hosted in the system by varying the lattice spacing and the Rabi frequency. Our findings highlight the crucial role of atom motion in the many-body dynamics of Rydberg atom arrays at the TFIM limit, and propose simple benchmark measurements to test for its presence in future experiments. 
    more » « less
    Free, publicly-accessible full text available November 20, 2025